Solution:
Consider Figure 3.5A shown below.
Before we can use cosine law to solve for the magnitude of R, we need to solve for the interior angle 𝛽 first. The value of 𝛽 can be calculated by inspecting the figure and use simple knowledge on geometry. It is equal to the sum of 20° and the complement of 40°. That is
\beta = 20^\circ +\left( 90^\circ -40^\circ \right) = 70^\circ
We can use cosine law to solve for R.
\begin R^2 & =A^2+B^2 -2AB \cos \beta \\ R^2 & = \left( 12.0\ \text \right) ^2+\left( 20.0\ \text \right)^2-2 \left( 12.0\ \text \right) \left( 20.0\ \text \right) \cos 70^\circ \\ R & = \sqrt < \left( 12.0\ \text\right) ^2+\left( 20.0\ \text \right)^2-2 \left( 12.0\ \text \right) \left( 20.0\ \text \right) \cos 70^\circ> \\ R & =19.4892 \ \text \\ R & =19.5 \ \text \ \qquad \ \left( \text \right)> \endWe can solve for α using sine law.
\begin \frac & = \frac \\ \frac> & = \frac> \\ \sin \alpha & = \frac \\ \alpha & = \sin ^ \left( \frac \right) \\ \alpha & = 74.6488 ^\circ \endThen we solve for the value of θ by subtracting 70° from α.
\theta=74.6488 ^\circ -70 ^\circ = 4.65^\circ
Therefore, the compass reading is
4.65^\circ, \text \ \qquad \ \left( \text \right)>